Definition: Polynomial over a Ring, Degree, Variable

A polynomial over the commutative ring \(R\) is a term

\[p:=a_{0}+a_{1}x+a_{2}x^{2}+\cdots +a_{n}x^{n}\]

with \(a_{i}\in R,\,i=0,\ldots ,n,\,n\in \mathbb {N} \).

Related definitions:

  1. Definition: Reduction of an Integer Polynomial Modulo a Prime Number

Algorithms: 1
Definitions: 2 3 4 5 6 7 8 9
Proofs: 10 11 12
Propositions: 13 14


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013