Definition: Subfield
Let \((F, + ,\cdot)\) be a field. A subset \(S\subseteq R\) is called a subfield of \(F\), if \((S, + ,\cdot)\) itself is a field.
Mentioned in:
Definitions: 1 2
Proofs: 3
Theorems: 4
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001