◀ ▲ ▶Branches / Analysis / Proposition: A General Criterion for the Convergence of Infinite Complex Series
Proposition: A General Criterion for the Convergence of Infinite Complex Series
A complex infinite series \(\sum_{k=0}^\infty x_k\) is a convergent complex series, if and only if for every \(\epsilon > 0\) there is an index \(N(\epsilon)\in\mathbb N\) such that
\[\left|\sum_{k=m}^n x_k\right| < \epsilon\quad\quad \text{for all}\quad n\ge m\ge N(\epsilon).\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983