◀ ▲ ▶Branches / Analysis / Lemma: Abel's Lemma for Testing Convergence
This lemma and the following proposition are due to Niels Henrik Abel (1802 - 1829).
Lemma: Abel's Lemma for Testing Convergence
The infinite series $\sum_{n=1}^\infty a_nb_n$ is convergent, if (by setting $A_0:=0$, $A_k:=\sum_{i=1}^k a_i$):
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Heuser Harro: "Lehrbuch der Analysis, Teil 1", B.G. Teubner Stuttgart, 1994, 11th Edition