◀ ▲ ▶Branches / Analysis / Definition: Convergent Real Series
Definition: Convergent Real Series
A real series \(\sum_{k=0}^\infty x_k\) is called convergent, if the real sequence \((s_n)_{n\in\mathbb N}\) of partial sums \[s_n:=\sum_{k=0}^n x_k,\quad\quad n\in\mathbb N\] is convergent.
For convergent real series, the notation
\[\sum_{k=0}^\infty x_k\]
can, depending on the context, denote two things:
- the convergent real series itself or
- the convergent real series itself or
Table of Contents
- Proposition: Cauchy Product of Convergent Series Is Not Necessarily Convergent
- Proposition: Sum of Convergent Real Series
- Proposition: Difference of Convergent Real Series
- Proposition: Product of a Real Number and a Convergent Real Series
Mentioned in:
Definitions: 1 2 3
Lemmas: 4
Proofs: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Propositions: 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983