Proof
(related to Proposition: Arithmetic of Functions with Limits - Difference)
Context
Hypothesis
- Let $f,g$ have the limits $\lim_{x\to a}f(x)=L$ and $\lim_{x\to a}g(x)=H.$
- Given $\epsilon > 0.$
Implications
- By the definition of limit:
- there is a $\delta_1 > 0$ such that if $x\in D$ and $0 < |x-a| < \delta_1,$ then $|f(x)-L|\le \frac \epsilon2,$ and
- there is a $\delta_2 > 0$ such that if $x\in D$ and $0 < |x-a| < \delta_2,$ then $|g(x)-H|\le \frac \epsilon2.$
- Get the minimum $\delta=\min(\delta_1,\delta_2).$
- Note that $\delta > 0.$
- Since $f-g:D\to\mathbb R,$ we have that if $x\in D$ with $0 < |x-a| < \delta,$ then by the triangle inequality.
$$\begin{array}{rcl}|(f(x)-g(x))-(L-H)|&=&|(f(x)-L)-(g(x)-H)|\\
&=&|(f(x)-L)+(-g(x)+H)|\\
&\le&|f(x)-L|+|-(g(x)-H)|\\
&=&|f(x)-L|+|g(x)-H|\\
& < & \frac \epsilon2 + \frac \epsilon2\\
&=&\epsilon\end{array}.$$
Conclusion
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016