Theorem: Triangle Inequality

For all real numbers \(x,y\in\mathbb R\) the so-called triangle inequality holds: $|x+y|\le |x|+|y|,$ where $|.|$ denotes the absolute value. The same inequality holds if we replace $x,y$ by complex numbers and use the absolute value of complex numbers.

Proofs: 1

Corollaries: 1
Explanations: 2
Proofs: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Propositions: 20 21
Sections: 22


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983