# Proof

It is sufficient to prove the proposition for a positive $$b$$-adic fraction.

According to its definition, a $$b$$-adic fraction is a real series, which means that it is a sequence $$(s_m)_{m\in\mathbb N}$$ of partial of sums $$(s_m)_{m\in\mathbb N}$$ with

$s_m=\sum_{k=-n}^m a_kb^{-k}.$

and $$0\le a_k < b$$. We prove the proposition in two steps:

### $$(1)$$ The sequence $$(s_m)_{m\in\mathbb N}$$ is a real Cauchy sequence.

Let $$j\ge -n$$ and let without loss of generality $$m \ge j$$. Then we have

$\begin{array}{rrl} |s_m - s_j|&=&\sum_{k=-n}^m a_kb^{-k} - \sum_{k=-n}^j a_kb^{-k}\\ &=&\sum_{k=j+1}^m a_kb^{-k}\\ &\le & \sum_{k=j+1}^m (b-1)b^{-k}\\ &=&(b-1)b^{-j-1}\sum_{k=0}^{m-j-1} b^{-k}\quad\quad ( * ) \end{array}$

In the sum $$( * )$$, we can apply the formula for the sum of geometric progression, namely

$\sum_{k=0}^{m-j-1} b^{- k}=\sum_{k=0}^{m-j-1} \left(\frac 1b\right)^{k}=\frac{1-\left(\frac 1b\right)^{m-j}}{1- \frac 1b}=\frac{b-b^{j-m+1}}{b-1}.$

By replacing this result in $$( * )$$, we get

$\begin{array}{rrl} |s_m - s_j|&=&(b - 1)b ^ { - j - 1}\cdot \frac{b - b^{j - m + 1}}{b - 1}\\ &=&b^{ - j } - b ^ { - m - 2}\\ &\le & b^{ - j} < \epsilon \end{array}$

for any arbitrarily small $$\epsilon > 0$$, if $$j$$ gets sufficiently large. This proves that $$(s_n)_{n\in\mathbb N}$$ is a Cauchy sequence.

### $$(2)$$ The sequence $$(s_m)_{m\in\mathbb N}$$ converges to a real number.

This follows immediately from the completeness principle of real numbers, due to which each real Cauchy sequence has a real limit.

Thank you to the contributors under CC BY-SA 4.0!

Github:

### References

#### Bibliography

1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer VerĂ¤nderlichen", Vieweg Studium, 1983