Proposition: Calculation Rules for General Powers

Let \(x,y\) be real numbers and let \(a,b\) be positive real numbers. Then the general power function obeys the following calculation rules:

\[\begin{array}{rl} (i)&a^{x+y}=a^x\cdot a^y,\\ (ii)&(a^x)^y=a^{x\cdot y},\\ (iii)&a^x\cdot b^x=(ab)^x,\\ (iv)&a^{-x}=\frac 1{a^x}.\\ \end{array}\]

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983