◀ ▲ ▶Branches / Analysis / Proposition: General Powers of Positive Numbers
Proposition: General Powers of Positive Numbers
Let \(x\) be any real number and let \(a > 0 \) be a positive real number. Then the general power function \(a\to a^x\) is well-defined and equals the exponential function of general base \(a\), formally:
\[a^x=\exp_a(x).\]
The following interactive figure demonstrates the general power in relation to different values of exponents \(x\in[-20,20]\).
Table of Contents
Proofs: 1
- Proposition: Calculation Rules for General Powers
- Proposition: Derivative of General Powers of Positive Numbers
- Proposition: Integral of General Powers
Mentioned in:
Corollaries: 1
Lemmas: 2
Proofs: 3 4 5
Propositions: 6 7 8 9 10 11 12 13
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983