Proposition: Compact Subset of Real Numbers Contains its Maximum and its Minimum

Let $A$ be a non-empty compact subset of a the real numbers $\mathbb R$. Then $$\max(A)\in A,~\min(A)\in A,$$ where $\max(A)$ and $\min(A)$ denote the maximum and minimum of \(A\), respectively.

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984