◀ ▲ ▶Branches / Analysis / Theorem: Completeness Principle for Complex Numbers
Theorem: Completeness Principle for Complex Numbers
Every complex Cauchy sequence \((c_n)_{n\in\mathbb N}\) in the metric space \((\mathbb C,|~|)\) converges against a limit \(c\in\mathbb C\).
Table of Contents
Proofs: 1
Mentioned in:
Explanations: 1
Proofs: 2
Propositions: 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983