Theorem: Continuous Functions Mapping Compact Domains to Real Numbers Take Maximum and Minimum Values on these Domains

Let $X$ be a metric spaces, $D\subset X$ be a compact subset and $f:D\mapsto \mathbb R$ a continuous function mapping the domain $D$ to the real numbers $\mathbb R$. Then there are points \(p,q\in X\), for which the function $f$ takes the maximum and the minimum values of the image $f(D)$, formally $$\exists p,q\in X:~f(p)=\max(f(D)),\quad f(q)=\min(f(D)).$$

Proofs: 1 Corollaries: 1

Chapters: 1
Proofs: 2

Thank you to the contributors under CC BY-SA 4.0!




  1. Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984