Proposition: Continuous Real Functions on Closed Intervals are Riemann-Integrable

Let \([a,b]\) be a closed real interval. If a function \(f:[a,b]\mapsto\mathbb R\) is continuous, then it is Riemann-integrable.

Proofs: 1

Proofs: 1
Theorems: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983