Proof
(related to Proposition: Monotonic Real Functions on Closed Intervals are Riemann-Integrable)
- Let [a,b] be a closed real interval.
- Let f:[a,b]\mapsto\mathbb R be a monotonic real function.
- We will show by construction that f is Riemann-integrable.
- By setting t_k:=a+k\frac{b-a}n,\quad k=0,1,\ldots, n, we get an equidistant partition of the closed interval [a,b] with a=t_0 < t_1 < \ldots < t_n=b.
- By setting \begin{array}{rcl}\phi(x)&:=&f(t_{k-1}),\quad t_{k-1}\le x < t_k\\ \psi(x)&:=&f(t_{k}),\quad t_{k-1}\le x < t_k\\\phi(b)&:=&f(b)\\\psi(b)&:=&f(b)\end{array} for k=1,2,\ldots n we achieve that \phi(x)\le f(x)\le \psi(x) for all x\in[a,b].
- Furthermore, we have by construction
\begin{array}{rcl}\int_a^b\psi(x)dx-\int_a^b\phi(x)dx&=&\sum_{k=1}^n f(t_k)(t_k-t_{k-1})- \sum_{k=1}^n f(t_{k-1})(t_k-t_{k-1})\\&=&\frac{b-a}n\left(\sum_{k=1}^n f(t_{k})-\sum_{k=1}^n f(t_{k-1})\right)\\&=&\frac{b-a}n(f(t_n))-f(t_0)).\quad\quad ( * )\end{array}
- Because of the existence of arbitrarily small positive rational numbers, ( * )\le\epsilon, for sufficiently big natural number n.
- This means that f is Riemann-integrable.
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983