◀ ▲ ▶Branches / Analysis / Proposition: Convexity and Concaveness Test
Proposition: Convexity and Concaveness Test
Let $a < b,$ and let $f:(a,b)\to\mathbb R$ be a twice differentiable function on the open real interval $(a,b).$ Then $f$ is convex if and only if $f^{\prime\prime}(x)\ge 0$ for all $x\in]a,b[.$ Analogously, $f$ is concave, if and only if $f^{\prime\prime}(x)\le 0$ for all $x\in(a,b).$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Sections: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983