Proposition: Difference of Convergent Real Series

Let $\sum_{k=0}^\infty a_k$ and $\sum_{k=0}^\infty b_k$ be convergent real series. Then the real series $\sum_{k=0}^\infty (a_k-b_k)$ is also convergent.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983