Proposition: Estimate for the Remainder Term of Complex Exponential Function

The absolute value of the remainder term \(r_{N + 1}(x)\) of the complex exponential series. \[r_{N + 1}(z):=\sum_{n=N+1}^\infty\frac{x^n}{n! }\]

can be estimated by the inequation \[ |r_{N + 1}(x)|\le 2\frac{|x|^{N+1}}{(N+1)!}\quad\text{for }|x|\le \frac {N+2}2.\]

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983