Proof
(related to Proposition: Estimate for the Remainder Term of Complex Exponential Function)
We can estimate the remainder term of the exponential series as follows
- By the definition of the complex exponential series, we have $$|r_{N + 1}(z)|= \sum_{n=N+1}^\infty\frac{z^n}{n! }.$$
- The triangle inequality gives us
$$\ldots \le \sum_{n=N+1}^\infty\frac{|z|^n}{n! }.$$
- By the distributivity law for real numbers and the properties of the absolute value for real numbers, $$\ldots =\frac{|z|^{N+1}}{(N+1)!}\left(1 + \frac{|z|}{N+2} + \frac{|z|^2}{(N+2)(N+3)} + \ldots + \frac{|z|^k}{(N+2)\cdot\ldots\cdot(N+k+1)} + \ldots \right).$$
- Finally, by the rules for calculating with inequalities or real numbers we get $$\le\frac{|z|^{N+1}}{(N+1)!}\left(1 + \frac{|z|}{N+2} + \left(\frac{|z|}{(N+2)}\right)^2 + \ldots + \left(\frac{|z|}{(N+2)}\right)^k + \ldots \right).$$
- If we require that \(|z|\le\frac{N+2}{2}\) then we have
\[\frac{|z|}{N+2}\le \frac{\frac{N+2}{2}}{N+2}=\frac 12.\]
- Therefore, for \(|z|\le\frac{N+2}{2}\) it follows with the formula for the infinite geometric series.
$$|r_{N + 1}(z)|\le \frac{|z|^{N+1}}{(N+1)!}\left(1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^k} + \ldots \right)=2\frac{|z|^{N+1}}{(N+1)!}.$$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983