◀ ▲ ▶Branches / Analysis / Example: Examples of Real Functions, Whose Graphs Cannot be Plotted
Example: Examples of Real Functions, Whose Graphs Cannot be Plotted
(related to Chapter: Types of Real Functions)
Example 1 Rational Numbers Identity Function
$f:\mathbb R\to\mathbb \{0,1\}$ with
\[f(x):=\cases{
1&if$x$is rational\\
0&if
$x$is irrational.
}\]
Example 2 (...)
If you know more examples, consider to contribute them.
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983