Theorem: Fundamental Theorem of Calculus

Let $I$ be a real interval and let $F:I\to\mathbb R$ be an antiderivative of a continuous function $f:I\to\mathbb R$. Then, for all $a,b\in I$ the following holds for the Riemann integrals of $f$ on the closed real interval $[a,b]$:

$$\int_a^bf(x)dx=F(b)-F(a).$$

Different Notation

$$\int_a^bf(x)dx=F(x)\;\Rule{1px}{4ex}{2ex}^{b}_{a}.$$

Proofs: 1

Proofs: 1 2
Theorems: 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983