◀ ▲ ▶Branches / Analysis / Proposition: Generalized Bernoulli's Inequality
Proposition: Generalized Bernoulli's Inequality
Let $x_1,\ldots,x_n$ be non-negative real numbers for some natural number $n\in\mathbb N.$ Then the following inequality holds:
$$\prod_{k=1}^n(1+x_k)\ge 1+\sum_{k=1}^n x_k.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, F.; Kreh, M.: "Tutorium Analysis 1 und Lineare Algebra 1", Springer Spektrum, 2018, 4th Edition