◀ ▲ ▶Branches / Analysis / Proposition: Generalized Triangle Inequality
Proposition: Generalized Triangle Inequality
For all natural numbers $n\ge 1$ and all real numbers (respectively complex numbers) $a_1,\ldots,a_n$ the following inequality holds: $$\left|\sum_{k=1}^n a_k\right|\le\sum_{k=1}^n|a_k|,$$
where $|\cdot|$ denotes the absolute value of real numbers (respectively absolute value of complex numbers).
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, F.; Kreh, M.: "Tutorium Analysis 1 und Lineare Algebra 1", Springer Spektrum, 2018, 4th Edition