◀ ▲ ▶Branches / Analysis / Proposition: How Convergence Preserves the Order Relation of Sequence Members
Proposition: How Convergence Preserves the Order Relation of Sequence Members
Let \((a_n)_{n\in\mathbb N}\) and \((b_n)_{n\in\mathbb N}\) be convergent real sequences with the limits \(\lim_{n\rightarrow\infty} a_n=a\) and \(\lim_{n\rightarrow\infty} b_n=b\). Using the definition of the order relation for real numbers "\(\le\)" and "\( < \)" the following holds:
- From \(a_n \le b_n\) for all \(n\in\mathbb N\) it follows that \(a \le b\).
- From \(a_n \le b_n\) for all \(n\in\mathbb N\) it follows that \(a \le b\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983