Proposition: How Convergence Preserves the Order Relation of Sequence Members

Let \((a_n)_{n\in\mathbb N}\) and \((b_n)_{n\in\mathbb N}\) be convergent real sequences with the limits \(\lim_{n\rightarrow\infty} a_n=a\) and \(\lim_{n\rightarrow\infty} b_n=b\). Using the definition of the order relation for real numbers "\(\le\)" and "\( < \)" the following holds:

  1. From \(a_n \le b_n\) for all \(n\in\mathbb N\) it follows that \(a \le b\).
  2. From \(a_n \le b_n\) for all \(n\in\mathbb N\) it follows that \(a \le b\).

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983