Proof

(related to Proposition: How Convergence Preserves Upper and Lower Bounds For Sequence Members)

This follows immediately from the corresponding rule, how convergence preserves the order relation of sequence members, if we define the constant sequences

\[l_n\le a_n\le u_n.\]

For the limits \(\lim_{n\rightarrow\infty} a_n=a\), \(\lim_{n\rightarrow\infty} l_n=L\) and \(\lim_{n\rightarrow\infty} u_n=U\) it follows then that

\[L\le a\le U.\]


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983