◀ ▲ ▶Branches / Analysis / Proposition: Integral of the Natural Logarithm
Proposition: Integral of the Natural Logarithm
Let $0 < a < b$. The Riemann-integral of the natural logarithm on the closed real interval is given by the formula
$$\int_a^b\log(x)dx= x(\log(x)-1)\;\begin{array}{|l}a\\\\b\end{array}.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983