Proposition: Natural Logarithm

The exponential function \(\exp:\mathbb R\to \mathbb R_{+}^*\) is invertible on any closed real interval \([a,b]\). Its inverse function is continuous, strictly monotonically increasing and called the natural logarithm \[\ln:\mathbb R_{+}^*\to\mathbb R.\]

Proofs: 1

  1. Proposition: Functional Equation of the Natural Logarithm
  2. Proposition: Derivative of the Natural Logarithm
  3. Proposition: Integral of the Natural Logarithm

Definitions: 1 2 3
Proofs: 4 5 6 7 8 9
Propositions: 10 11 12 13 14 15 16 17 18


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983