Proposition: Limit of 1/n

Let $(x_n)_{n\in\mathbb N}$ be a real sequence with $$x_n:=\frac 1n,\quad\quad n\in\mathbb N,~n > 0.$$ Then $(x_n)_{n\in\mathbb N}$ is convergent with $$\lim_{n\to\infty}\frac 1n=0.$$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983