Processing math: 100%

Proposition: Limit of 1/n

Let (x_n)_{n\in\mathbb N} be a real sequence with x_n:=\frac 1n,\quad\quad n\in\mathbb N,~n > 0.

Then (x_n)_{n\in\mathbb N} is convergent with \lim_{n\to\infty}\frac 1n=0.

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983