Proposition: Limit of 1/n
Let $(x_n)_{n\in\mathbb N}$ be a real sequence with $$x_n:=\frac 1n,\quad\quad n\in\mathbb N,~n > 0.$$
Then $(x_n)_{n\in\mathbb N}$ is convergent with
$$\lim_{n\to\infty}\frac 1n=0.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983