Proposition: Limit of 1/n
Let (x_n)_{n\in\mathbb N} be a real sequence with x_n:=\frac 1n,\quad\quad n\in\mathbb N,~n > 0.
Then
(x_n)_{n\in\mathbb N} is
convergent with
\lim_{n\to\infty}\frac 1n=0.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983