Branches
History
Index
◀
▲
▶
Branches
/
Analysis
/ Proof
Proof
(related to
Proposition: Limit of 1/n
)
Let $\epsilon > 0$ be an (arbitrarily small)
real number
.
It follows from the
existence of natural numbers exceeding any positive real numbers
that there is a natural number $N(\epsilon)$ such that $N > \frac 1\epsilon.$
It follows that $\frac 1n=|\frac 1n-0| < \epsilon$ for all $n\ge N(\epsilon).$
By
definition of convergence
, it means that the
real sequence
with $x_n:=\frac 1n$, $n\in\mathbb N,$ $n > 0$ is convergent with $\lim_{n\to\infty}\frac 1n=0.$
∎
Thank you to the contributors under
CC BY-SA 4.0
!
Github:
References
Bibliography
Forster Otto
: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983