◀ ▲ ▶Branches / Analysis / Proposition: Limit of a Function is Unique If It Exists
Proposition: Limit of a Function is Unique If It Exists
Let D\subseteq\mathbb R be a subset of real numbers and let f:D\to\mathbb R be a function having the limit L at x=a\in D. Then this limit is unique. Formally \lim_{x\to a} f(x)=L\wedge \lim_{x\to a} f(x)=M\Longrightarrow L=M.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016