Proof
(related to Proposition: Limit of a Function is Unique If It Exists)
Context
Hypothesis
- Assume, the limit $\lim_{x\to a} f(x)$ exists, but it not unique, e.g. $\lim_{x\to a} f(x)=L$ and $\lim_{x\to a} f(x)=M$ but $L\neq M.$
Implications
- Since $L\neq M$, then $|M - L| > 0.$
- By the definition of limit, there is a $\delta_1 > 0$ such that for all $x\in D$ satisfying $0 < |x - a| < \delta_1,$ it follows that $|f(x) - L| < \frac{|M-L|}{2}.$
- Similarly, there is a $\delta_2 > 0$ such that for all $x\in D$ satisfying $0 < |x - a| < \delta_2,$ it follows that $|f(x) - M| < \frac{|M-L|}{2}.$
- Take the minimum $\delta:=\min(\delta_1,\delta_2)$ and select $x\in D$ with $0 < |x-a| < \delta.$
- Then it follows by the triangle inequality that $$\begin{array}{rcl}|M-L|&=&\frac{|M-L|}{2}+\frac{|M-L|}{2}\\
&>& |f(x) - L| + |f(x) - M|\\
&=&|f(x)-L| + |M-f(x)|\\
&\ge&|f(x)-L+M-f(x)|\\
&=&|M-L|.\end{array}$$
- This leads to the contradiction $|M-L| > |M-L|.$
Conclusion
- Therefore, $L\neq M$ must be wrong and we have $L=M.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-