Let $a_n,a_{n-1},\ldots,a_1,a_0\in\mathbb R$ be real numbers, $n$ be a natural number, and let $$p:=\begin{cases}\mathbb R&\to\mathbb R,\\x&\to p(x):=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0\end{cases}$$ be a polynomial of the degree $n.$ Then for every $a\in\mathbb R,$ $\lim_{x\to a }p(x)=p(a).$
Proofs: 1
Proofs: 1