◀ ▲ ▶Branches / Analysis / Proposition: Limit of a Rational Function
Proposition: Limit of a Rational Function
For any polynomials $p$, $q$ and a real number $a\in\mathbb R$ with $q(a)\neq 0,$ it follows for the rational function $\frac{p(x)}{q(x)}$ that $$\lim_{x\to a}\frac{p(x)}{q(x)}=\frac{p(a)}{q(a)}.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016