Definition: Rational Functions

Given two real polynomials $$\begin{array}{rcl}p(x)&=&a_nx^n + \ldots + a_1x + b_0,\\p(x)&=&b_mx^m + \ldots + b_1x + b_0,\end{array}$$ with the degrees $n$ an $m$, let $D:=\{x\in\mathbb R:~q(x)\neq 0\}$. A rational function is a function defined by

\[r:=\begin{cases} \mathbb D&\to\mathbb R\\ x&\to r(x):=\frac{p(x)}{q(x)}. \end{cases}\]

  1. Proposition: Rational Functions are Continuous

Proofs: 1
Propositions: 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983