◀ ▲ ▶Branches / Analysis / Definition: Limits of Complex Functions
Definition: Limits of Complex Functions
Let $U\subseteq\mathbb C$ be a subset of complex numbers and let $f:U\to\mathbb C$ be a function $f(x)$ is said to converge to a limit at the point $\alpha$,
formally $$w=\lim_{\substack{z\in U\\z\to\alpha}} f(z)$$
if given $\epsilon > 0$ there exist $\delta > 0$ such that if $$|z-\alpha| < \delta,\quad z\in U,$$ then $$|f(z)-w| < \epsilon.$$
Mentioned in:
Definitions: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Riesz F., Sz.-Nagy, B.: "Functional Analysis (Translation)", Dover Publications, 1955
- Kneser, Hellmuth: "Mathematische Lehrbücher - Funktionentheorie", Vanderhoeck & Ruprecht, 1958
- Lang, Serge: "Complex Analysis", Springer, 1999, Forth Edition