Proof

(related to Corollary: Convergence of Complex Conjugate Sequence)

According to the corresponding proposition \((c_n)_{n\in\mathbb N}\) is a convergent complex sequence with \[\lim_{n\to\infty}c_n=c\] if and only if
\[c=a+ib,\quad a=\lim_{n\to\infty}\Re(c_n),\quad b=\lim_{n\to\infty}\Im(c_n).\] Because \[\overline{c}=a-ib,\quad a=\lim_{n\to\infty}\Re(\overline{c_n}),\quad -b=\lim_{n\to\infty}\Im(\overline{c_n}),\] it follows \[\lim_{n\to\infty}\overline{c_n}=\overline{c}.\]


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983