Definition: Local Extremum

Let $a < b$ and $]a,b[$ be an open real interval and $f:]a,b[\to\mathbb R$ a function $f$ is said to have a local maximum (respectively a local minimum) $x$, if there is a positive number $\epsilon > 0$ such that

$f(x)\ge f(\xi)$ (respectively $f(x)\le f(\xi)$) for all $\xi$ with $|x-\xi| < \epsilon.$

If the equality $f(x)=f(\xi)$ holds only for $\xi=x$, then the local maximum (respectively minimum) is said to be isolated.

The general term for a local maximum (or a local minimum) is local extremum (plurals: extrema, maxima, mimima).

  1. Proposition: Zero-Derivative as a Necessary Condition for a Local Extremum
  2. Proposition: Sufficient Condition for a Local Extremum

Propositions: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983