◀ ▲ ▶Branches / Analysis / Proposition: Zero-Derivative as a Necessary Condition for a Local Extremum
Proposition: Zero-Derivative as a Necessary Condition for a Local Extremum
Let $a < b$ and $]a,b[$ be an open real interval and $f:]a,b[\to\mathbb R$ a function with a local extremum at $x$, and let $f$ be differentiable at $x$. Then $f'(x)=0$.
Table of Contents
Proofs: 1 Explanations: 1
Mentioned in:
Explanations: 1
Sections: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983