◀ ▲ ▶Branches / Analysis / Proposition: Monotonic Real Functions on Closed Intervals are Riemann-Integrable
Proposition: Monotonic Real Functions on Closed Intervals are Riemann-Integrable
Let \([a,b]\) be a closed real interval. If a function \(f:[a,b]\mapsto\mathbb R\) is monotonic, then it is Riemann-integrable.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983