The Euler's identity $\exp(i\pi)+1=0$ is only a special case of a more general result:# Corollary: More Insight to Euler's Identity

(related to Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function)

For some special real numbers $x\in\mathbb R$ the following equations hold:

$$\exp(ix)=\pm 1.\quad\quad (*) $$

These special cases for $x$ are as follows:

Proofs: 1

Proofs: 1 2

Thank you to the contributors under CC BY-SA 4.0!




  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983