◀ ▲ ▶Branches / Analysis / Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function
Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function
The real sine, real cosine and complex exponential function have for $x=0,~\pi/2,~\pi,~3\pi/2,$ and $2\pi$ the following values (where $\pi$ denotes the $\pi$ constant):
$x$ |
$0$ |
$\frac\pi2$ |
$\pi$ |
$\frac{3\pi}2$ |
$2\pi$ |
$\sin(x)$ |
$0$ |
$1$ |
$0$ |
$-1$ |
$0$ |
$\cos(x)$ |
$1$ |
$0$ |
$-1$ |
$0$ |
$1$ |
$\exp(ix)$ |
$1$ |
$i$ |
$-1$ |
$-i$ |
$1$ |
Table of Contents
Proofs: 1 Corollaries: 1 2 3 4 5
Mentioned in:
Examples: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983