Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function

The real sine, real cosine and complex exponential function have for $x=0,~\pi/2,~\pi,~3\pi/2,$ and $2\pi$ the following values (where $\pi$ denotes the $\pi$ constant):

$x$ $0$ $\frac\pi2$ $\pi$ $\frac{3\pi}2$ $2\pi$
$\sin(x)$ $0$ $1$ $0$ $-1$ $0$
$\cos(x)$ $1$ $0$ $-1$ $0$ $1$
$\exp(ix)$ $1$ $i$ $-1$ $-i$ $1$

Proofs: 1 Corollaries: 1 2 3 4 5

Examples: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983