Proposition: n-th Roots of Unity

Let $n\in\mathbb Z$ be an integer. The equality $z^n=1$ has exactly $n$ complex solutions, i.e. $$\zeta_k=\exp\left(2\pi i\frac{k}{n}\right),\quad\quad k=0,1,\ldots,n-1,$$ called the $n$-th roots of unity. In particular, $\zeta_k=\zeta_m$ for any two integers $k,m$ being congruent $k(n)\equiv m(n)$ modulo $n.$

Proofs: 1

Chapters: 1
Lemmas: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983