Definition: Order Relation for Step Functions

Let \(\phi,\psi:[a,b]\mapsto\mathbb R\) be step functions over the closed interval \([a,b]\). The order relation for step functions is defined as \[\phi\le \psi:\Longleftrightarrow \phi(x)\le \psi(x)\quad\text{for all }x\in[a,b].\]

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983