Proof

(related to Proposition: Step Functions as a Subspace of all Functions on a Closed Real Interval)

According to the definition of a subspace, we have to verify the following properties:

1 $0\in T[a,b].$

2 If $\phi,\psi\in T[a,b]$ then $\phi+\psi\in T[a,b].$

3 If $\phi\in T[a,b]$ and $\lambda\in\mathbb R$ then $\lambda\phi\in T[a,b].$


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983