Theorem: Partial Integration
Let $[a,]$ be a closed real interval, let $f,g:[a,b]\to\mathbb R$ be continouosly differentiable functions. Then
$$\int_a^bf(x)g'(x)dx=f(x)g(x)\;\Rule{1px}{4ex}{2ex}^b_a -\int_{a}^{b}g(x)f'(x)dx.$$
Mnemonic Notation
$$\int fdg=fg-\int gdf.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983