Processing math: 100%

Proposition: Product of Convegent Complex Sequences

Let (a_n)_{n\in\mathbb N} and (b_n)_{n\in\mathbb N} be complex sequences convergent to the limits \lim_{n\rightarrow\infty} a_n=a and \lim_{n\rightarrow\infty} b_n=b. Consider the complex sequence (c_n)_{n\in\mathbb N} with c_n:=a_n \cdot b_n. Then (c_n)_{n\in\mathbb N} is also convergent and its limit equals \lim_{n\rightarrow\infty} c_n=a \cdot b.

This proposition can be expressed in the short form:

\lim_{n\rightarrow\infty} (a_n \cdot b_n)=\lim_{n\rightarrow\infty} a_n \cdot \lim_{n\rightarrow\infty} b_n.

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983