Let (a_n)_{n\in\mathbb N} and (b_n)_{n\in\mathbb N} be complex sequences convergent to the limits \lim_{n\rightarrow\infty} a_n=a and \lim_{n\rightarrow\infty} b_n=b. Consider the complex sequence (c_n)_{n\in\mathbb N} with c_n:=a_n \cdot b_n. Then (c_n)_{n\in\mathbb N} is also convergent and its limit equals \lim_{n\rightarrow\infty} c_n=a \cdot b.
This proposition can be expressed in the short form:
\lim_{n\rightarrow\infty} (a_n \cdot b_n)=\lim_{n\rightarrow\infty} a_n \cdot \lim_{n\rightarrow\infty} b_n.
Proofs: 1