(related to Proposition: Product of a Complex Number and a Convergent Complex Sequence)
The proposition follows immediately from the corresponding proposition for the product of convergent complex sequences. \[\lim_{n\rightarrow\infty} (a_n \cdot b_n)=\lim_{n\rightarrow\infty} a_n \cdot \lim_{n\rightarrow\infty} b_n,\]
if we set \(b_n\) to a constant complex number \(b_n:=x\) for all \(n\in\mathbb N\).