Proof

(related to Proposition: Product of a Complex Number and a Convergent Complex Sequence)

The proposition follows immediately from the corresponding proposition for the product of convergent complex sequences. \[\lim_{n\rightarrow\infty} (a_n \cdot b_n)=\lim_{n\rightarrow\infty} a_n \cdot \lim_{n\rightarrow\infty} b_n,\]

if we set \(b_n\) to a constant complex number \(b_n:=x\) for all \(n\in\mathbb N\).


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983