◀ ▲ ▶Branches / Analysis / Proposition: Product of Convegent Real Sequences
applicability: $\mathbb {N, Z, Q, R, C}$
Proposition: Product of Convegent Real Sequences
Let \((a_n)_{n\in\mathbb N}\) and \((b_n)_{n\in\mathbb N}\) be convergent real sequences to the limits \(\lim_{n\rightarrow\infty} a_n=a\) and \(\lim_{n\rightarrow\infty} b_n=b\). Consider the real sequence \((c_n)_{n\in\mathbb N}\) with \(c_n:=a_n \cdot b_n\). Then \((c_n)_{n\in\mathbb N}\) is also convergent and its limit equals \(\lim_{n\rightarrow\infty} c_n=a \cdot b\).
Notes
- This proposition can be expressed in the short form: \[\lim_{n\rightarrow\infty} (a_n \cdot b_n)=\lim_{n\rightarrow\infty} a_n \cdot \lim_{n\rightarrow\infty} b_n.\]
- The proposition's proof can be transferred also to sequences of other kinds than real numbers, for example, the complex numbers.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983