◀ ▲ ▶Branches / Analysis / Definition: Real Absolute Value Function
Definition: Real Absolute Value Function
The absolute value function is a function defined by
\[f(x):=|x|\]
for all \(x\in\mathbb R,\) where $|x|$ denotes the absolute value of $x$.
The following graph visualizes the absolute value function:
Table of Contents
- Proposition: Derivate of Absolute Value Function Does Not Exist at \(0\)
Mentioned in:
Propositions: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983