Proof

(related to Corollary: (Real) Exponential Function Is Always Positive)

For \(x \ge 0\) it follows from the definition of the exponential function that

\[\exp(x)=1+x+\frac {x^2}2+\ldots\ge 1 > 0.\] If \(x < 0\), then \(-x > 0\), and thus \(\exp(-x) > 0\), by the same argument. From the reciprocity of exponential function it follows in this case that \[\exp(x)=\frac 1{\exp(-x)} > 0.\]

Therefore, the exponential function produces only positive real numbers, for all \(x\in\mathbb R\).


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983